
Distributed Authentication Methods for ARP Cache Poisoning
Mitigation

Omar Chedid

November 22, 2019

Abstract - The address resolution protocol (ARP) is
a network communication protocol used to map net-
work layer addresses to link layer addresses. Un-
der normal circumstances, the protocol has proven to
function efficiently. However, the protocol is not de-
signed to cope with malicious hosts that can take ad-
vantage of the lack of authentication to launch identity
impersonation attacks. Multiple methods have been
proposed to detect, mitigate, and prevent such attacks,
but each has its own limitations. In this paper, we
propose a distributed majority voting scheme in which
peers on the local area network contribute to the detec-
tion of ARP cache poisoning by sharing caches. The
new protocol effectively prevents cache poisoning at
the cost of minimal overhead traffic and application
layer blocking time.

Keywords: ARP Spoofing, ARP Cache Poisoning,
MITM, DOS, Majority Voting, Distributed Systems

I. Introduction

The address resolution protocol [10] (RFC 826) is a net-
work communication protocol used to map network layer
addresses (IP) to link layer addresses (MAC). The proto-
col relies on requests and replies communicated between
hosts belonging to the same subnet and is never commu-
nicated across networks; hence making it a layer two pro-
tocol. The process of resolving the IP address mapping of
a given host begins by broadcasting an ARP request on to
the network. This request queries all other hosts for the
MAC address of the host being resolved. If a host on that
broadcast domain is assigned an IP address that matches
the IP address being queried, then it will reply with its
MAC address. Once a reply is received by any given host,
the IP to MAC mapping is stored in that hosts local ARP
cache. A major flaw with the ARP protocol is that it lacks
any form of authentication. Combined with the fact that
the protocol is stateless implies that hosts will accept any
ARP reply even if they did not send out a request. Adver-
saries can take advantage of this vulnerability to poison
a given targets ARP cache. As a result of simple cache

manipulation, this vulnerability can lead to attacks such
as identity impersonation, denial of service, and man-in-
the-middle relays.

The problem of ARP cache poisoning roots back to the
fundamental security principle of authentication. The ab-
sence of an authentication mechanism makes it extremely
difficult to verify legitimate traffic and detect malicious
behavior on the network. Several schemes have been pro-
posed to mitigate cache poisoning but each has its own
limitations. The trivial solution is to set static ARP en-
tries manually for each cache. This approach eliminates
the possibility of cache poisoning all together, however,
it does not scale well for large networks that are mobile
and dynamically changing over time. Other approaches
introduce mechanisms on top of ARP which add a whole
new level of complexity to an inherently fast, simple, and
stateless protocol. These mechanisms include public key
cryptography, centralized servers, and dynamic intrusion
detection systems. While all these methods help mitigate
cache poisoning to some extent, they are not practically
deployable due to their computational complexity, cen-
tralized design, and administrative cost.

In this paper, we attack the problem at hand through
a distributed computing approach in which we rely on a
voting mechanism to detect the possibility of cache poi-
soning. Our proposed protocol adopts the traditional ARP
protocol and combines it with an end host algorithm that
statistically corrects malicious cache entries. Overall, we
achieve authentication and improve the chances of detect-
ing and correcting malicious cache entries. Since our ap-
proach relies on statistical analysis, detection accuracy is
affected by the number of hosts active in the network. The
rest of the paper is organized as follows. Section II pro-
vides the motivation behind this paper by providing ex-
amples of the attacks that can be carried out with cache
poisoning. Section III highlights important contributions
achieved in previous related works. Section IV goes in
depth into the proposed algorithm and its components. Fi-
nally, section V evaluates the results collected, and section
VI concludes the paper.

1



II. ARP Cache Poisoning Attacks

ARP cache poisoning is a vulnerability exploited by an
attacker to modify the cache table of a target. The goal
of the exploit is to place the attacker in a beneficial posi-
tion on the network that allows him to sniff, drop, or forge
data. The following are some of the attacks that take ad-
vantage of ARP cache poisoning. In all cases, the hosts
with MAC addresses A and B are the targets, and the host
with MAC address C is the attacker:

Identity Impersonation

In Figure 1, the attacker sends out a fabricated unicast
ARP reply message to the target with MAC address A
claiming to own the MAC address B. Upon updating its
cache, the host with MAC address A thinks that it is com-
municating with the host with MAC address B, when in
fact all communication is done with the adversary. In gen-
eral, this type of attack is easily detected because once a
session is hijacked, it is very difficult for the adversary to
fabricate the network behavior of the host it is imperson-
ating.

Figure 1: Identity impersonation attack

Man-In-The-Middle

A more sophisticated version of the identity imperson-
ation attack gives the attacker access to a targets traffic
without having to interact with it directly. In a man-in-
the-middle attack, the adversary convinces his target that
he is the gateway while convincing the gateway that he is
the target. By enabling IP forwarding on his machine, all
of the targets traffic flows through the attacker undetected.
Assuming traffic is not encrypted, an adversary will have
full access to the plain text passing through his network
interface card (NIC). Figure 2 provides a detailed visual
of this attack.

Figure 2: MITM attack

Denial of Service

In this attack, the adversary can prevent the target from
leaving the network by continuously sending out ARP re-
ply messages claiming to be the gateway. This will force
all of the targets traffic to be redirected towards the at-
tacker who then simply drops all packets. This process
effectively denies the target from accessing the Internet as
seen in Figure 3.

Figure 3: DOS attack

Remote Access

On a final note, ARP cache poisoning can be exploited
even from outside of the local area network. All the at-
tacker has to do is gain remote access to one of the hosts
currently connected to the LAN by compromising some
vulnerability in its operating system. From there on, ev-
erything can be automated with the numerous ARP poi-
soning scripts and tools open sourced online [11]. We
have highlighted only a couple of the attacks that exploit
ARP cache poisoning to emphasize the dangers of the ex-
ploit. We now turn to methods provided in related works
used to detect and mitigate them.

2



III. Related Works
The four main techniques used to tackle ARP cache

poisoning are static, dynamic, centralized, and crypto-
graphic techniques. Starting off with the static techniques;
Cisco Systems offer an administratively static solution
called switch port security [12]. This method requires
network administrators to manually configure the num-
ber of different MAC addresses allowed per port on their
network devices. Port security has proven to work well
for small to medium sized networks, however, it does not
scale well for larger enterprises. In addition, this method
requires the installation of high cost routers and switches
that might not be available for smaller businesses. An-
other costly but highly effective solution proposed by [5]
suggests dividing a given network into a large number of
subnets; each with a small number of hosts. This ap-
proach prevents exposing the entire network in case a host
is compromised. Again, this technique; like all static tech-
niques faces the issue of scalability and administrative
costs placed on network administrators.

On the other hand, dynamic techniques follow a more
automated approach to detecting ARP cache poisoning
that requires minimal administrative intervention . These
techniques use network monitoring tools such as XARP
[9], ARPWatch [6], Anti Netcut [1], NoCut [2], and An-
tiARP [3] to log ARP traffic and take note of suspicious
behavior. These tools monitor changes in local caches
and report unusual patterns back to network administra-
tors. In addition, most of these tools run in promiscuous
mode which gives them access to all traffic on the net-
work. This allows these tools to pick up and detect signa-
ture traffic patterns used in ARP MITM attacks. While all
of these methods successfully detect ARP cache poison-
ing attacks, they heavily rely on network administrators
to take further action towards mitigating them. Other dy-
namic techniques use intrusion detection systems (IDS)
such as Snort [15] for detection. These systems conven-
tionally use machine learning methods to classify mali-
cious traffic patterns. Although most of these systems of-
fer high accuracy rates, they tend to also have high false
positive rates which create an inconvenience for network
administrators.

[8] propose implementing an ARP central server (ACS)
that manages and authenticates all ARP traffic on the net-
work. The server also implements a secondary long term
cache as a backup in case the server itself has been poi-
soned. Although they offer an elegant solution for cache
poisoning correction, the authors disregard that fact that
the server itself can be impersonated and thus compro-
mised. This makes the approach flawed because it cre-
ates a single point of failure for gaining access to the link

layer of the network. Similarly, TARP [14] sends out a
ticket with every ARP message as a form of authentica-
tion. The approach relies on implementing a centralized
Local Ticket Agent (LTA) which faces the same problems
that the ACS does.

Moving on to the cryptographic approaches proposed
to solve ARP cache poisoning, we start off with S-ARP
[4]. This method introduced public key cryptography as a
layer on top of ARP that implements authentication. It is
important to note that with this approach, a key distribu-
tion center (KDC) is needed to distribute keys to the hosts
in the network. While S-ARP solves the issue of authenti-
cation, it does so at the cost of time consuming computa-
tions and complex infrastructure implementation. On the
contrary, [13] propose using one-way hash functions to
generate a Merkle hash tree that is distributed to all hosts.
This approach has a computational advantage over pub-
lic key cryptography since hash functions are known to be
faster. The drawback of the design is that it is based on a
single trusted node in the network which is assigned the
task of computing the Merkle tree.

IV. Proposed Solution

In the previous section we discussed some of the key
weaknesses found in recently proposed solutions. In this
section we demonstrate how our design avoids major pit-
falls and still manages to detect and correct cache poison-
ing. Before we dive in to the proposed method, we em-
phasize that our system makes a strong but realistically
feasible assumption about the environment that it is run-
ning in. The system assumes that the first two entities
spawned in the network are trusted and secured entities
that are not trying to poison each others caches. Even if
these entities are compromised at a later point in time, the
system will detect and correct any malicious entries found
in the cache tables of these entities as new hosts join the
network. We will consider one of the entities in our net-
work to be the gateway, and the other to be the first host
that connects to the subnet. From now on, any time the
term “error” is mentioned in the text, it is referring to a
malicious entry found in a cache.

We are proposing the implementation of a peer-to-peer
system that distributes the ARP cache tables of hosts be-
longing to a subnet among each other. The purpose of
sharing this information with peers is to provide an error
detection and correction mechanism on the network. By
following a distributed approach, we avoid the problem of
creating a single point of failure which is observed in the
centralized systems discussed previously. In addition, our

3



approach is autonomous in the sense that no administra-
tive intervention is needed. Finally, the proposed meth-
ods is backwards compatible with conventional ARP and
most of the methods mentioned in the related works sec-
tion which encourages its use as an additional line of de-
fense. Before we explain the details of the error detection
and correction algorithm, we propose our cache distribu-
tion protocol first.

Cache Distribution Protocol

To begin with, each host keeps track of the other hosts
that it has shared its cache with along with time stamps
that represent the last time the cache was shared and mod-
ified. By running hosts in promiscuous mode; they are
given access to all ARP traffic on the network. When-
ever an ARP reply packet is sent out on the network, all
hosts will share their ARP cache table with the host re-
ceiving the reply. With the goal of saving bandwidth, a
host can choose to not share it’s cache table if it has al-
ready shared it before and has not modified it since. Once
any host receives an ARP reply packet, it will update its
current cache immediately (as proposed in conventional
ARP) then will remain idle for up to α seconds until its
peers caches have been received. Also, all peers will not
accept any additional ARP traffic for at least α + β sec-
onds until the verification algorithm has been executed on
the receiving host were β represents the run time of the
verification algorithm. The purpose of this timeout pe-
riod is to prevent any error from propagating back on to
the network. The cache distribution protocol is described
below.

Algorithm 1 Cache Distribution Protocol
Require: NIC running in promiscuous mode

1: LocalIP ← Host.IP
2: if ARP Traffic Detected then
3: if Packet.DestinationIP ! = LocalIP then
4: Send Cache to Packet.DestinationIP
5: Reject all ARP traffic for α+ β seconds
6: else
7: Execute ARP protocol
8: Accept caches for α seconds
9: Execute cache correction algorithm

10: end if
11: end if

It is clear that for the given protocol to function prop-
erly, two distinct parameters needs to be established. Both
α and β are two non-deterministic parameters that are net-
work and host dependent respectively. In section V of the
paper, we provide a detailed analysis on the impact of the

blocking time of these parameters on the performance of
application layer applications.

Verification Algorithm

We will now explain how our error detection and cor-
rection algorithm works by considering the scenario of a
network consisting of N ≥ 2 entities. The cache distri-
bution protocol will provide each entity with up to N-1
cache tables that the verification algorithm will use to ver-
ify entries inside the local cache. Assume a host wants to
verify an entry X found in its local cache. That entry will
contain two components; an IP address IPX and a MAC
address MACX. This host also has access to a set of N-1
ARP cache tables at most; that may or may not contain an
entry for the IP address IPX. We now assume that there
exists k ≤ N-1 cache tables that do have an entry for the
IP address IPX. For those k cache tables, we perform a
majority vote on the value of the corresponding MAC ad-
dress entry found in each of those tables. This means that
our host will look over k MAC address values and find
the one that appears the most. The host will then compare
the entry found in its cache table with the most occurring
MAC address. If the two are the same then the host agrees
with the majority of his peers and is not under attack. If
the two entries are different, then our algorithm will swap
out the current value with the most occurring value found
in the remote caches. In the case when the algorithm re-
turns equally probable MAC address mappings, the host
will not update his cache and will keep the current value.
Algorithm 2 below provides a detailed description of how
a cache is verified at each end host.

Algorithm 2 Cache Correction Algorithm
Require: LocalCache,RemoteCaches

1: for each localEntry ∈ LocalCache do
2: ipToV erify ← localEntry.IP
3: macToV erify ← localEntry.MAC
4: counter < MAC, count >← null, 0
5: for each cache ∈ RemoteCaches do
6: for each entry ∈ cache do
7: if entry.IP = ipToV erify then
8: counter ← entry.MAC, count+ +
9: end if

10: end for
11: end for
12: mostOccuringMac = Max(counter)
13: if macToV erify! = mostOccuringMac then
14: localEntry.MAC ← mostOccuringMac
15: end if
16: end for

4



V. Experimental Setup and
Evaluation

To test the proposed protocol and verification algo-
rithm, we have created a real network environment con-
sisting of 3 virtual hosts on VMWare Workstation. Each
host is running Ubuntu Linux with 4 GB of RAM and all
hosts are interconnected using a NAT adapter configura-
tion. Both the cache distribution protocol and the verifi-
cation algorithm are implemented using Java and the TCP
socket library. Finally, the environment is tested on a 16
GB 2.8 GHZ machine running Windows 10.

In the coming subsections, we will go back to the ARP
cache poisoning attacks mentioned in section II and show
how the proposed method mitigates them. It is important
to note there exists a few special cases that our method
does not address. In addition, the proposed protocol is im-
plemented at the cost of network traffic volume ∆, cache
distribution time α, and verification algorithm run time β.

Successful Mitigation Cases

Man-In-The-Middle

We will first start off with the man-in-the-middle sce-
nario described in section II. The attackers main goal is
to poison two or more entities on the network at the same
time. The moment the attacker sends out the first ARP
reply message to his first target, all other hosts on the net-
work will detect this message and enter a blocking period
for α + β seconds. Now, when the attacker sends out the
second ARP reply message to his second target, that target
will be in a blocking state and will simply drop the packet.
Although it is costly, the blocking period proposed in the
protocol makes sure that a single host at most can be poi-
soned on the network. Consequently, any MITM attack
is reduced to a less sophisticated attack that involves the
poisoning of a single entity.

Single Host Poisoning

Assuming that a single host has been poisoned by an
attacker; we just showed that no other cache can possi-
bly be poisoned on the network as a result of the cache
distribution protocol. The poisoned host can be assured
that all possible N − 1 caches that he receives carry valid
network data. Consequently, once the cache verification
algorithm is executed α + β seconds later; all poisoned
entries in the cache are remediated. Since this algorithm
is executed after every ARP reply message, it ensures that
cache poisoning is always detected and corrected on the
spot. Also, since all hosts enter a timeout period after

detecting the ARP reply message, this implies that mali-
cious ARP traffic is not propagate further on the network
through the sharing of caches.

Limitations and Special Cases

IP Harvesting Attacks

In the previous subsection we showed how the pro-
posed method resolved two common attack scenarios:
MITM and identity impersonation. However, there ex-
ists a special case where an attacker is capable of getting
his malicious IP-MAC binding registered in the cache of
a target when that specific IP address has not yet been as-
signed to a node on the network. This attack is known as
an IP harvesting attack. As mentioned in [8], if an attacker
manages to register his IP-MAC binding on any node, it
will be honored because no other legitimate cache will
have a conflicting entry for that specific IP.

Legitimate IP Address Changes

The final scenario we will address is when a legitimate
entity changes its IP address. In short, we are trying to
differentiate between an actual IP address change and an
IP address spoof. To solve this problem, we adopt the An-
tidote approach proposed in [7] which checks if the pre-
vious MAC address is still alive. Upon receiving a new
IP-MAC mapping that contradicts with an entry found in
the current local cache, a host will send out 50 probe pack-
ets to the original MAC address before running the veri-
fication procedure. If any of the 50 packets gets a reply
then the entire procedure is aborted and the ARP reply is
ignored. Otherwise, the host attempts to verify the en-
try he just received by using the information received by
his peers and the verification algorithm. It is important
to note that this scenario gives an attacker a small win-
dow for successfully spoofing an IP address. The attacker
starts off by sending out a fabricated ARP reply message
to one of his targets claiming to own a certain MAC ad-
dress. He then immediately runs a denial of service attack
on the MAC address he is claiming to own by flooding it
with traffic that prevents it from replying to one of the 50
probe packets. With enough traffic generated and aimed
at his target, this attack will slip by undetected.

Integrating the Antidote [7] Method

By combining the Antidote approach with algorithm 1,
we add an extra layer of protection against cache poison-
ing; but also introduce new costs. For each ARP reply
message; not only are we going to have to wait for α+ β
seconds, we now need to introduce a new timeout period
γ which represents the time required to send out 50 probe

5



packets and wait for a reply. Similarly, the network traf-
fic volume has increased from ∆ to ∆ + 50 ∗ λ where λ
represents the size of the probe packet. Algorithm 3 be-
low shows the integration of the Antidote approach with
algorithm 1.

Algorithm 3 Cache Distribution Protocol With Antidote
Require: NIC running in promiscuous mode

1: LocalIP ← Host.IP
2: if ARP Traffic Detected then
3: if Packet.DestinationIP ! = LocalIP then
4: Send Cache to Packet.DestinationIP
5: Reject all ARP traffic for α+ β seconds
6: else
7: if mapping in packet contradicts cache then
8: Send 50 probe packets to original IP
9: if any reply returns then

10: Terminate procedure
11: else
12: Execute ARP protocol
13: Accept caches for α seconds
14: Execute cache correction algorithm
15: end if
16: else
17: Execute ARP protocol
18: Accept caches for α seconds
19: Execute cache correction algorithm
20: end if
21: end if
22: end if

Overhead and Run Time Complexity
In this subsection, we will be computing the overhead

associated with our proposed method. We break down the
overhead into two categories; traffic volume and blocking
time. Cisco Systems recommend a maximum of 500
hosts per subnet as a result of broadcast overhead. We
use this number to evaluate the worst case cost of our
protocol and algorithm. We will first define the costs
associated with traffic volume.

∆ Total Cache Distribution Traffic Volume
Λ Cache packet size
λ Probe packet size{
Λ = N ∗ (32 + 48) N ≥ 0

∆ = Λ ∗ (N − 1) + 50 ∗ λ N ≥ 1

Assuming N = 500 hosts in our subnet; whenever an
ARP reply message is sent out, N-1 caches are transmitted
after it. If we also assume the worst case scenario of each
cache having N entries in it, this implies an average cache

size of 5 KB (500 entries * (32 bit IP address + 48 bit
MAC address)). The worst case cost of cache verification
is then roughly 2.5 MB (5 KB * 499) which can be broken
up into 499 connections in parallel each transmitting 5 KB
only.

We now turn our attention towards analyzing the
blocking time of the proposed method. In addition to
bandwidth costs, the protocol introduces an ARP timeout
period of γ + (α+ β).

α Cache Distribution Time
β Verification Algorithm Run Time
γ Probe Packet Distribution Time

Both α and γ are dependant on the NIC installed on
each host. β on the other hand depends on the computa-
tional specifications of the end host. The run time com-
plexity of algorithm 2 is O(n) + O(n2) which has the
worst case scenario of O(n2). With the goal of minimiz-
ing the overall blocking time and maintaining a minimum
run time safety margin, we decided to give α and γ the
value of 0.5 seconds and β the value of 1 second. We also
added an extra safety margin blocking time of 0.5 seconds
to make sure that all distributed tasks have been executed
which gives a total blocking time of 2.5 seconds per re-
quest.

Application Layer Performance

We will now be modeling the worst case performance
of our proposed protocol by visualizing the impact of the
blocking time on the performance of the application layer.
We assume that there exists N hosts on our subnet and
all of these hosts have empty ARP caches. All N hosts
are trying to resolve some IP-MAC binding at the same
time. Since our protocol only allows the processing of
a single request at a time, this turns conventional ARP
into a contention protocol where hosts are competing for
a slot to resolve an IP address. In the scenario where every
single host is fighting for a slot, the worst case blocking
time will grow with the number of hosts on the network.

The graph below models the contention time required
to gain access to the ARP channel by the most unsuc-
cessful host on the subnet. Clearly, the proposed protocol
has a heavy impact on the performance of the application
layer due to the build up of multiple timeout periods. As
the number of hosts increases on the network, the proba-
bility of two or more hosts resolving some IP address at
the same time will increase as well. The timeout period
then becomes a function of the number of hosts.

6



Figure 1: Worst Case Resolution Time (seconds) as a
Function of the Number of Hosts on the Subnet

VI. Conclusion and Future Work
In this paper, we have explained how authentication

can be exploited in the ARP protocol to launch multiple
attacks on LANs. We have also mentioned approaches
that solve this problem through cryptographic, central-
ized, dynamic, and static solutions. After highlighting
the weaknesses of each approach, we proposed our dis-
tributed cache sharing algorithm which is combined with
a majority voting scheme for error correction. The over-
head of the approach is mentioned in the literature along
with some special cases that our method does not solve.
Clearly, there is a strong trade off between security and
performance.

Future research in this area can be done to improve the
algorithm proposed by making it completely distributed.
One way of doing this is to broadcast the ARP reply to all
peers and have them run the verification algorithm at their
end. This will reduce the run time complexity of the algo-
rithm to O(n) at each host since a simple linear look-up
is done. After running the algorithm, a small binary reply
message can be sent out from each peer back to the origi-
nal host indicating if the mapping in the ARP reply agrees
with an entry found in that peers cache. Not only will this
approach reduce run time, it will also reduced the band-
width overhead because caches are not transmitted over
the network anymore. In addition, the minimization of
the parameters α, β, and γ will improve the performance
of the protocol further.

References
[1] Anti netcut version 2.0.

[2] A. Ali. Nocut 1.001a.

[3] ColorSoft. Antiarp.

[4] A. Omaghi D. Bruschi and E. Rosti. S-arp: A secure
address resolution protocol. In Annual Computer Se-
curity Applications Conference, December 2003.

[5] T. Demuth and A. Leitner. Arp spoofing and poi-
soning: Traffic tricks. In Linux Magazine, page
56:2631, July 2005.

[6] L. N. R. Group. Arpwatch, the ethemet monitor pro-
gram; for keeping track of ethemet/ip address pair-
ings.

[7] I.Teterin. Antidote.

[8] S. Kumar and S. Tapaswi. A centralized detec-
tion and prevention technique against arp poison-
ing. In Proceedings Title: 2012 International Con-
ference on Cyber Security, Cyber Warfare and Digi-
tal Forensic (CyberSec), pages pp. 259–264., 2012.

[9] C. Mayer. Xarp advanced arp spoofing detection.

[10] D. C. Plummer. An ethernet address resolution pro-
tocol. In IETF RFC 826, November 1982.

[11] SANS Institute InfoSec Reading Room. An ettercap
prime. Technical report, SANS Institute, 2004.

[12] Cisco Systems. Configuring dynamic arp inspection.
In Catalyst 6500 Series Switch Cisco IOS Sofware
Configuration Guide, pages Chapter 39, Pages 39:1–
39, 2006.

[13] V. Kumar V. Goyal and M. Singh. A new architec-
ture for address resolution. 2005.

[14] W. Enck W. Lootah and P. McDaniel. Tarp: Ticket-
based address resolution protocol. In Annual Com-
puter Security Applications Conference, December
2005.

[15] Z. Jiang X. Hou and X. Tian. The detection and
prevention for arp spoofing based on snort. In 2010
International Conference on Computer Application
and System Modeling vol. 5 IEEE, pages V4–137,
2010.

7


